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Consider/introduce auxiliary scaling parameter t, for counting powers, ultimately set to t = 1.
For matrices, operators, etc, A and B,

etAetB ≡ eZ(t,A,B).

Based on Lemmata 1,2, and 3, below,

Z ≡ ln(etAetB) = (etAetB − 1)− 1

2
(etAetB − 1)2 +

1

3
(etAetB − 1)3 + ...

is evaluated recursively [1] through algorithms in Applications 1,2,3,...,

Z = t(A+B) +
t2

2
[A,B] +

t3

12

(
[[A,B], B] + [A, [A,B]]

)
+
t4

24
[[[B,A], A], B]

− t5

720
([[[[A,B], B], B], B] + [[[[B,A], A], A], A]) +

t5

360
([[[[A,B], B], B], A] + [[[[B,A], A], A], B])

− t5

120
([[[[A,B], B], A], B] + [[[[B,A], A], B], A]) + ...

• Powers of t higher than the first have coefficients which are always commutators—they are in
the Lie Algebra. (Campbell, 1897; Poincaré, 1899. Structures Lie’s converse (third fundamental)
theorem: exponentiation of the algebra yields the simply-connected group.)

• Z(t, A,B) = −Z(−t, B,A), whence even powers of t are A − B antisymmetric, while odd
ones are symmetric.

• Thompson representation:

Z(t, A,B) = t
(
e−tWAetW + etW̃Be−tW̃

)
,

where W and W̃ are in the Lie Algebra (A, B, and commutators), and W̃ (t, A,B) = W (−t, B,A) =
A+B

4
+ ....

• Zassenhaus expansion:

et(A+B) = etA etB e−
t2

2
[A,B] e

t3

6
(2[B,[A,B]]+[A,[A,B]]) et4......

• Triple formula:
etV (t) = etAetBetA,

so that V (t, A,B) is an even function of t, V (t) = V (−t). Evaluated by, e.g., Application 1:

V = 2A+B +
t2

6
[(A+B), [B,A]] + ... .

Note the duality between B and −V .
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Lemma 1:

δeZ =
∫ 1

0
ds e(1−s)Z δZ esZ ,

for any matrix (noncommutative) Z. E.g., δ = ∂
∂t

.

Provable directly from finite N defn of exponential, then N →∞.

Alternative proof: Consider ∆ as operator δ acting on everything to its right.

d

ds

(
e−sZ ∆ esZ

)
= e−sZ [∆, Z] esZ ;

then integrate by
∫ 1
0 ds to obtain

e−sZ ∆ esZ −∆ =
∫ 1

0
ds e−sZ [∆, Z] esZ ,

hence

[∆, eZ ] = δeZ =
∫ 1

0
ds e(1−s)Z δZ esZ .

Lemma 2 (Hadamard formula): eAB e−A = e[A B ≡ B + [A,B] + 1
2!
[A, [A,B]] + ....

Proof: Note left commutation [A,B] ≡ Ad(A) B acts on B like a derivative operator—obeys
operator Leibniz’ chain rule. For a parameter s,

d

ds

(
esA B e−sA

)
=
[
A , esA B e−sA

]
,

so f ≡ esA B e−sA satisfies
df

ds
= [A, f ],

with B.C. f(0) = B. In turn, this is formally solved by the series in s, f(s) = es[A f(0).

Alternatively, it can be proved by induction in powers of s,

dnf

dsn
= [A, [A, [A, ..., f ]..., ], ], ].

These two lemmata lead to

Lemma 3 (Campbell-Poincaré fundamental identity):

(δeZ) e−Z =
e[Z − 1

[Z
δZ ,

or equivalently,

δZ =
[Z

e[Z − 1

(
(δZ) e−Z

)
,
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where the fraction is the celebrated generating function of the Bernoulli numbers. Other equivalent
forms are,

e−ZδeZ =
1− e−[Z

[Z
δZ = δZ

eZ] − 1

Z]
,

etc.

Application Algorithm 1. (Poincaré. Readily exhibits Z construction out of nested commu-
tators, and applied mathematicians and Lie Group textbooks like it, cf. [2], but clumsy computa-
tionally).

Set now eZ(t) = eAetB. For δZ = ∂tZ ≡ Z ′ in Lemma 3, note that

B = e−ZδeZ =
1− e−[Z

[Z
Z ′,

hence

Z ′ =
[Z

1− e−[Z
B = ψ

(
e[Z
)
B,

where

ψ(x) ≡ x lnx

x− 1
= 1−

∞∑
n=1

(1− x)n

n(n+ 1)
.

(NB. ψ(e−y) =
∑∞

n=0Bn
yn

n!
, for the Bernoulli numbers: B0 = 1, B1 = −1

2
, B2 = 1

6
, B4 = − 1

30
,...)

Since, from Lemma 2, e[Z = e[Aet[B, this reads

Z ′(t) = ψ
(
e[Aet[B

)
B,

and so one may integrate over t from Z(0) = A, to finally obtain

Z(1) = A+
(∫ 1

0
dt ψ

(
e[Aet[B

))
B.

It is manifest that all subleading terms to A+B are commutators, so Z is in the Lie Algebra.

This is essentially an algorithm to produce the series by judicious power expansion of ψ and its
arguments. For example, if only the term linear in B is sought (e.g.[3]), trivially, then,

Z = A+ ψ(e[A) B +O(B2) = A+
[A

1− e−[A
B +O(B2),

where all expansion coefficients are simply related to the Bernoulli numbers as above.
(Corollary: If O(B2) terms vanish, e.g. by virtue of special relations such as [A,B] = sB,
it follows that Z = A+ s

1−exp(−s)
B = A+ψ(es)B. Taking inverses and rescaling yields a braiding

relation, eAeB = e(exp s)B eA.)

Application Algorithm 2. By virtue of its mechanical recursiveness, this one is favored by
phycisists, e.g. [4]. Set eZ(t) ≡ etAetB. Operate both sides by δ = ∂t, and multiply by e−Z on the
right. By Lemmata 3, and 2,

e[Z − 1

[Z
Z ′ = A+ et[A B.
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Now, setting

Z ≡
∞∑

n=1

tnZn ,

the Zns can be solved for recursively in the power of tn−1 components of this eqn, so

Z1 = A+B =⇒ Z2 =⇒ Z3 =⇒ ...

Manifestly, again, for n > 1, each Zn is a function of commutators only.

• Z(t, A,B) = −Z(−t, B,A), =⇒ even powers of t are A − B antisymmetric, while odd ones
are symmetric.

Application Algorithm 3. (Hausdorff, cf [5]. Most systematic as a power expansion in A or
B.)

Consider the replacement operators

δA ≡
(
δA

∂

∂A

)
, δB ≡

(
δB

∂

∂B

)
,

which act on functions of A and B to successively replace each occurrence of A by δA, to first
order, preserving the orderings, in accord with Leibniz’s rule. Seek a symmetry of Z(A,B), upon
infinitesimal dilation of B, δB = εB, i.e. find δA = −εD(A,B) s.t., to O(ε2),

Z(A,B) = Z(A− εD,B + εB) +O(ε2),

so that
eAeB = eA−εDeB+εB = eA(1− εe−AδAe

A)(1 + εB)eB +O(ε2).

So, evaluating δAe
A by Lemma 3, one has to O(ε2),

1− e−[A

[A
D = B,

whence

D =
[A

1− e−[A
B.

Consequently, δZ = δAZ + δBZ = 0 amounts to((
[A

1− e−[A
B

)
∂

∂A

)
Z =

(
B

∂

∂B

)
Z.

The l.h.side raises the power of B, so the eqn may be solved recursively in each term Zn of O(Bn)
in Z,

Zn =
1

n

((
[A

1− e−[A
B

)
∂

∂A

)
Zn−1,

that is,

Z0 = A, Z1 =
[A

1− e−[A
B = D, ...

etc, as in Application 1.
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